
Pawn

embedded scripting language

A Gentle Introduction
to Programming

January 2015 CompuPhase

ii

“CompuPhase” and “Pawn” are trademarks of ITB CompuPhase.
“Java” is a trademark of Sun Microsystems, Inc.
“Linux” is a registered trademark of Linus Torvalds.
“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft

Corporation.
“Unicode” is a trademark of Unicode, Inc.

Copyright c⃝ 2005–2015, ITB CompuPhase
Eerste Industriestraat 19–21, 1401VL Bussum, The Netherlands
telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com
WWW: http://www.compuphase.com

The information in this manual and the associated software are
provided “as is”. There are no guarantees, explicit or implied,
that the software and the manual are accurate.

Typeset with TEX in the “DejaVu” typeface family.

Introduction to programming — 1

Introduction to programming
The world of programming computers or other devices may be
intimidating when you first step into it. You are greeted with a
new jargon, a vast set of technologies that are identified with
unfamiliar mnemonic names, and a pile of details that all seem
interrelated. The learning curve appears steep. You do not know
where to start. On top of this, every specialist that you ask will
give you different advice —sometimes strongly opinionated.

The three hurdles that a beginning programmer typically en-
counters are:
⋄ mastering the analytical way of problem solving;
⋄ learning a “programming language” needed to express the so-
lution in;

⋄ and getting fluent with the software tool set for constructing
programs.

These three items are indeed interrelated: the tools that you
have determine the way that you approach and fix a problem.∗
It is difficult to go into one of these subjects and postpone the
introduction of the others. Yet, we must start somewhere.

The approach that I have chosen here is to first cover the en-
tire programming process very succinctly, and then to start over
again adding a few details. The first part is quite incomplete and
it probably raises more questions than it answers; at the same
time, you may find that the second part repeats some of the first
part. Fortunately, this introduction is quite thin.

A brief tour
Whatever the language or tool, programming is a craft that re-
quires a particular approach to problem solving —or even a par-
ticular way of thinking about activities and information. It cen-
tres around analysis: “what needs to be done under which con-
ditions and criteria”, reductionism: subdividing a large task into
a hierarchy of smaller tasks, and synthesis: bringing it all to-
gether.

∗ It is tempting, if the only tool you have is a hammer, to treat everything as
if it were a nail —Abraham Maslow

2 — CompuPhase

Before starting to build a program, one must understand the
problem at hand. Once you have a good idea of what the pro-
gram must do, you have to think about a solution in small dis-
crete and deterministic steps. Each step may have inputs and
outputs and you can describe the function of the step in terms
of the inputs and outputs alone —this is what the term discrete
refers to. As soon as you cannot explain a step without refer-
ring to other “steps” in the program, you have either a hidden
input or an implied assumption, and you would do well to recon-
sider the analysis. The term deterministic is meant to say that
the functioning of a step or a sequence of steps may not depend
on (human) interpretation or judgement.

Many beginning programmers find it helpful
to write down these steps in a flow chart (or
some other schematic). During the analysis
of the problem and its solution, you will often
find that some steps are rather big —too big
to be annotated in a little box in a flow chart.
Such larger steps must be subdivided further,
perhaps in another flow chart. A flow chart,
such as the one on the right, shows start &
termination points, processing, input & out-
put functions, decisions and loops.
Flow charts are among the oldest schematics for software. Many
other kinds of charts and graphs exist today, such as Nassi-Shnei-
derman diagrams, (“structograms”), state charts and class dia-
grams —the “United Modeling Language” has quite a collection
of diagrams to sketch the software development process.

What most people perceive as “programming”, the act of writ-
ing code in a programming language, only starts after the above
analysis is done. Many programming languages exist, and what
they all have in common is that they have a strict and rigid “gram-
mar” (called syntax) and the ability to invent new “words” from
a very small core vocabulary. The biggest difference between
programming languages and natural languages, however, is that
programming languages were devised to allow communication
with a machine. A machine, or another programmable device,
does exactly as instructed —no more, no less. A machine does
not assume anything about its environment; it neither anticipates
any future instructions, nor remembers what it did a fraction of
a second ago. The “small, discrete, deterministic steps” that the
preceding paragraphs mentioned must, hence, also be precise

Introduction to programming — 3

FIGURE 1: A programmer’s tool: the IDE for PAWN

and comprehensive.

Flow charts, or other kinds of charts, can still be made with pen-
cil on paper, but building a program that a computer can run
requires special tools —with names like compiler, linker/locator,
editor and debugger. Most programmers are also “power users”
on their computers and the tools that they use are frequently
less polished than your favourite office suite. On the other hand,
the tools made for programmers often focus on letting you work
efficiently, rather than wasting your time with animations, silly
sounds and other attempts to look cool. Briefly: be not deceived
by the Spartan interface of programmer’s tools.

Once we have gone through it all —when the analysis of the re-
quirements and the decomposition into small steps lie behind us
and after having keyed in the program code, we can (finally) run
the program and watch its output. Often, the program does not
behave as intended right away. It may not even run in its very
first version. This may be due to simple typing errors, which are
easily fixed; but it may also be due to the programmer not prop-
erly understanding the problem. Naturally, we now have to find
and fix the errors in the program, which is a cycle very similar
to the one for the initial development:
⋄ understand the program’s behaviour and what the program

4 — CompuPhase

should be doing instead,
⋄ find a solution/fix in small discrete steps,
⋄ write these steps in a programming language,
⋄ and review and test the program.
Basically, there is not much difference between the processes
of the initial development of a program and of the correction/
maintenance of an existing program. I have more to say about
finding and fixing errors further on, but here is a good place to af-
firm that testing and debugging (the process of correcting “bugs”
in a program) is an integral part of the development cycle.

A programming language …
The programming language is the most notable aspect of every-
thing related to programming. Many courses that teach pro-
gramming focus on one or more programming languages, and
this introduction is no exception. For purpose of illustrating how
a programming language looks, let us plunge ahead and walk
through a simple program (in the PAWN language): one that adds
two hard-coded numbers together.
LISTING: Adding two numbers
main()

{
new a, b, total

a = 24
b = 32
total = a + b

printf "%d", total
}

The first line says “main()”. This is the definition of the entry
point for the program. The program starts here, and it will run
all the instructions that are enclosed between curly brackets —
these are typically called braces. From this point on, the com-
puter will run through the program downwards, one instruction
at a time. You will later learn that there are specific instructions
in a programming language that changes the flow of control, but
the basic flow is sequentially downwards.
The first instruction following the opening brace (“{”), is a dec-
laration of three variables. A variable may be viewed as a con-
tainer: most variables contain a single value, some contain a
collection of values or other information. The program can put
something in a variable, and later retrieve it back from it. The

Introduction to programming — 5

FIGURE 2: A marble running through a maze, as a metaphor for
the computer running through a program. You might want to ob-
ject that such a maze is very linear and very simple, but 1⃝with
some ingenuity you can build complex behaviour in a maze (see
for example the marble “flip-flop” at the right), and 2⃝ you are
right on the mark: a maze is really simple, but in essence a com-
puter is nothing more than a set of electronic switches. Only
because there are so many of these switches, the computer can
pretend to be an intelligent device. Computer programming is,
hence, remarkably similar to building complex marble mazes. If
you are not convinced, please take a look at Matthias Wandel’s
“marble adding machine” —fully functional and brilliant in its
simplicity.

contents of a variable do not change by themselves; the only way
a variable can receive new information is because a program
stores something different into the variable. Noteworthy is that
a variable takes space in the memory (RAM) of the computer and
that it therefore must be created.

The next three statements in the program are “assignments”.
An assignment stores a value (or something else) in a variable.
For the mathematically inclined, the use of the “=” symbol may
be confusing at first sight, because this symbol does not denote
equality. Rather, it says that what is on the right hand of the
= must be stored to the variable that is on the left hand. The
right hand may have a complete arithmetic expression, such as

6 — CompuPhase

in the instruction that adds “a” and “b” together and stores it into
“total”; the left hand of the = symbol must always be a single
variable.

There is one more statement before the closing brace: “printf
"%d", total”. On this cryptic line, the first word, “printf” in-
dicates the activity: sending output to a terminal or to a (com-
puter) display; the last word, “total”, is the variable whose value
we want to show, and in the middle there is a code that controls
how the value is shown. The word “printf” is a system function,
it is documented in the programmer’s reference, along with all
control codes.∗ The code “%d” means: show a value in decimal
base and without a fractional part.

That completes the program. When the program “runs”, it exe-
cutes all statements between “{” and “}”, and then quits. Run it
again, and it will go through exactly the same steps, without ever
tiring and without ever realizing that this is already the second
(or third, fourth,. . .) time that it runs.

The variables in this program have the names “a”, “b” and “to-
tal”. You may choose the names of your variables, but there are
naming rules that you must adhere to. For instance, you may
only use letters, digits and the “ ” character in a variable name,
and the first character may not be a digit. Moreover, although
upper case letters and lower case letters are both valid, they will
indicate different variables. For example, you can have two dis-
tinct variables in your program that are called “baba” and “Baba”
respectively. Another way of putting this is to say that the PAWN
programming language is case sensitive. Not all programming
languages are case sensitive.

The purpose of an assignment is to save a value or some piece of
“data” for later use. The data can be anything: account numbers,
names, running totals, or whatever elements you need the pro-
gram to remember of a while. A program has no other memory
than what is in its variables. When a program runs step-by-step
through the statements, it does not remember anything about a
preceding statement(s). If the result of the current statement is
important for another statement further down in the program,
that result must be stored in a variable. On the other hand, if
your program does not use the contents of the variable at any

∗ The trailing “f” in printf stands for “formatted”. While printing text to a
display or console window, the function is able to format values on the fly.

Introduction to programming — 7

FIGURE 3: The mechanical calculator that Blaise Pascal built in
1642 is a good example of how you can create complex behaviour
with simple mechanics: levers, bearing, notch wheels, etc. To-
day, semiconductors have replaced mechanical automatons, but
the priciples of the logic flow and the control flow in automated
computation remain much the same.

later moment, the assignment is redundant: your programwould
have worked exactly the same as without the assignment —only
a little faster.

It is perfectly normal to change the value of a variable while run-
ning through a program. For example, when you want to count
the number of seconds that your program is “up and running”,
you would use a variable that starts at zero and that is incre-
mented by one on every tick of the clock —such as in the ex-
pression: runtime = runtime + 1. In algebra, this would be a
falsehood: a value cannot be equal to itself plus one; but in a
programming context it simply means that the new value of the
variable will become its current value plus one.

The order of the three assignment statements in the example pro-
gram is important. What the program does (after the declaration
of the variables), is to put a value into “a”, then another one in
“b”, and finally a calculated result in “total” —where it uses the
values previously stored in “a” and “b”. If you were to step over
to your neighbour and tell him that you spent your money on
a hat costing € 24.00 plus a book, and, oh yeah, the book was
€ 32.00, your neighbour will not have any problem to figure out

8 — CompuPhase

our total spendings. But if you say in a program something like
the lines below, you are bound to get the wrong answer:

a = 24
total = a + b
b = 32

The first assignment, “a = 24” is okay. When the computer
sees the second assignment, it does not yet know what value “b”
should have. The computer will, however, focus blindly on that
single instruction: “total = a + b”; it will not look ahead, nor
remember what happened in the recent past. And as a result,
the computer will just assume some value for “b”. It is likely that
“b” is assumed to be zero in the above sequence, so the second
assignment sets “total” to 24 + 0, which is 24. The last assign-
ment is okay as far as the computer is concerned, but it happens
to be useless at this spot.

… the tools to do it with …
Programmer’s do not use Microsoft Office —not for program-
ming, at least. Programmers write their code in an editor that
saves the output in a plain text file (originally this was called an
ASCII file). The little desktop applet “NotePad” that comes with
Windows is a plain text editor, but no programmer will actually
use NotePad on a day-to-day basis. NotePad is a very bare-bones
editor.
Many programming languages require that the source code (that
you type) be converted to a compact binary form that is ready
for execution. This process is called “compiling”. The tool that
does this is the compiler. When the compiler analyses the source
code, it may already find problems with the syntax (remember:
programming languages have a rigid syntax), and produce a list
of warnings and errors. You then have to go through the list
and correct any mistakes.∗ None of this is difficult, but for a
beginning programmer, it is new stuff that has to be learned.
There are more tools in a programmer’s repertoire, especially
targetted for larger, multi-developer projects, but in this guide I
focus on the few tools that are needed to build and run a small
program.

∗ Tip: start from the top. Sometimes a simple error in the source may con-
fuse the compiler and cause it to interpret your source code completely
differently. Fix the first few errors and then re-compile.

Introduction to programming — 9

I have talked about the tools as different programs, and origi-
nally they are separate programs. However, these days the pro-
grams are mostly integrated in an IDE: an “Integrated Develop-
ment Environment”. You type your source code inside the IDE,
which looks superficially like a word processor (e.g. Microsoft
Word), you compile it by clicking on a toolbar button, and any
errors or warning messages get presented to you as a kind of
search window: double-clicking on a line in that window moves
the text cursor right to the offending line in the editor. When
working within an IDE, you can largely remain unaware of the
processing of compilers and the like, and focus on the program
itself. The existence of IDEs is another important reason why
programmers shy away from NotePad.

The figure 1 shows a screen shot of the IDE for PAWN. After its
first launch, the main window will probably be empty, so your
first step is to create a new file using File / New (or the toolbar
button at the far left). For the file type, choose a “Pawn script”.
This gives you an edit window in which you can type everything
you want —but the goal is, of course, that you type in a valid
program. After you complete your program, you build it (Project
/ Compile; there is an equivalent button on the toolbar too). If the
build succeeds, you run it (Project / Execute). If the build does not
succeed, you correct the errors in the program and then attempt
to build it again.

The above description is the basic work flow, but there are ex-
ceptions, extensions and customizations. When you build a pro-
gram that must run on a different apparatus than the PC that you
compile it on, you may have to transfer it, rather than running
it (Debug / Transfer to remote host) Typically, the apparatus will
then execute it automatically. If you want to debug the program,
rather than simply run it, you have to turn on “debugging infor-
mation” before you build the program. Other options that you
may want to set are the paths (“folders” or directories) where
the output file(s) are stored, and the level of reporting. See the
dialog under Tools / Options. . . for details.

Many people learn by example, and therefore a noteworthy little
button on the toolbar is the one at the far right: the “example
programs”. This opens a separate window with a list of example
programs with short descriptions. You can also obtain this list
through the menu: Help / Example Programs....

10 — CompuPhase

… and how it all relates
Whatever the programming language and the tools that a pro-
grammer uses, the essence of “programming” is the decompos-
ing of a complete task into fully described logical steps. This
requires a holistic “bird’s eye” view and deep knowledge of the
abundance of low-level details at the same time. Oversights in
this process and misunderstandings about how the pieces fit to-
gether are the main causes of software errors, or “bugs”. If
you follow the press or the online forums, it will not excape you
that every once in a while, someone “invents” a (novel) program-
ming language or methodology that claims to eliminate bugs al-
together. Such claims, though, are as realistic as a hammer that
is hard on nails and soft on thumbs.∗

As was already stated earlier, finding and repairing bugs is an
integral part of the craft of programming. While the idea that
“programmers cannot test their code” is popular in some circles,
testing programs and finding the root cause of bugs requires the
same mental skills as creating the program in the first place.
Programmers are therefore actually quite good at testing code,
and in addition they have their programmer’s tools to make it
efficient. Every respectable programmer’s kit comes with a tool
that is called a debugger and whose purpose it is to give a de-
tailed and dynamic insight to the program. The time that you
invest in getting to know the debugger for your language, will
pay off in a matter of weeks (or perhaps even days).
When creating a program, there is an almost natural tendency to
work bottom-up. You start by picking some part of the product
that you can build and test independently, and from there the
project grows. The risk of this strategy is that any conceptual
error may surface only at the stage of testing. To counter this ef-
fect, many programmingmethodologies are top-down: start with
the global requirements and go progressively into more detail.
The risk of this alternate strategy is that the analysis is based
on assumptions and guesswork, because “hard data” can only
come from measuring functional code. There is no silver bullet,
but most designers/programmers agree that an iterative analyse-
build-review cycle works best.

∗ Some researchers insist that software should be proven to be correct by
mathematical reasoning. However, mathematical “proofs” have a long tra-
dition of containing flaws as well —the original, widely reviewed and publi-
cized, but flawed, proof of Fermat’s last theorem by Andrew Wiles in 1993
is illustrative in this respect.

Introduction to programming — 11

In closing
This “gentle introduction” has been a whirlwind tour through the
world of programming. There is much more to say, on all of the
topics that this introduction has only touched upon. If you man-
age to type in and build the little program that I discussed above,
that is a big step —yet, the program is not going to impress your
friends. Every journey needs to start with a first step and the
best practical advise that I can give you is make that first step.
Make small steps at first and experiment with new techniques or
syntaxes, but also verify everything you think you know.
PAWN’s strength lies in the scripting of devices or environments
with high demands on performance and restricted resources.
This combination is present in (tiny) electronic devices as well
as in high end computer games, which need every byte of RAM
and every cycle of the processor for their graphic, network and
game-play engines. These environments are extremely diverse.
The example program in this introduction prints the result of a
summation to the display. . . assuming that there is a display. If
you are developing for a programmable audio device/MP3 player
(for example), there might very well not be a display, and the pro-
gram is quite useless. The diversity of platforms on which PAWN
runs make it hard to write a general-purpose language tutorial
—“impossible” might be the more appropriate word, in fact. Yet,
the “Language Guide” contains a tutorial, and I recommend that
you read it, along with any reference of the device or (game)
environment/application that you wish to program.
Best of luck.

	Introduction to programming
	A brief tour
	A programming language …
	… the tools to do it with …
	… and how it all relates
	In closing

